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Using geometric corners to build a 2D mosaic from a set of imagesI. Zoghlami and O. Faugeras and R. DericheINRIA, 2004 route des Lucioles, BP 93F-06902 Sophia-Antipolis CedexEmail : Imad.Zoghlami@sophia.inria.frKeywords2D mosaic, corner models, homography estimation,line matching. AbstractThe main problem for building a mosaic is the com-putation of the warping functions (homographies). Infact two cases are to be distinguished. The �rst is whenthe homography is mainly a translation (i.e. the rota-tion around the optical axis and the zooming factorare small). The second is the general case (when therotation around the optical axis and zooming are arbi-trary). Some e�cient methods have been developed tosolve the �rst case. But the second case is more dif-�cult, in particular, when the rotation around the op-tical axis is very large (90 degrees or more). Often inthis case human interaction is needed to provide a �rstapproximation of the transformation that will bring usback to the �rst case. In this article we present amethod to solve this problem without human interac-tion for any rotation around the optical axis and fairlylarge zooming factors.1 IntroductionIn the last few years the interest in mosaicing hasgrown in the vision community because of its manyapplications (i.e. image compression, detection, videoconferencing. . . ). A mosaic is a collection of imagesand the transformations between them. In the caseof a collection of images of a planar scene taken fromdi�erent points of view or a collection of images of a3D scene taken from the same point of view (e.g. theonly di�erence between images is a rotation aroundthe optical center of the camera), the transformationbetween the images is a linear transformation of theprojective space P2, called a collineation or a homog-raphy [Fau93, Har94]. We call these mosaics 2D mo-saics because when we choose a reference image fromthe collection, all other images can be warped in the2D coordinate system attached to this image by thecorresponding homographies. Other possibilities suchas using a cylindrical projection also exist[MB95].In this article we deal only with the 2D mosaics,in particular with the homography estimation. We

distinguish two cases. The �rst is when the homogra-phy is mainly a translation (i.e. the rotation aroundthe optical axis and zooming are small). The second isthe general case (when the rotation around the opticalaxis and zooming are large). Some e�cient methodshave been developed to solve the �rst case. For ex-ample, if the overlap of the images is very large, (i.e.the motion is very small) it has been shown that anon linear criterion minimization using the Levenberg-Marquardt method yields very good results [Sze94],but it is very sensitive to the local minima and compu-tationally expensive. In another case when the over-lap is smaller we can use a hierarchical matching toavoid local minima[Qua84, WTK87, BAHH92]. Forlarger camera motion the phase correlation methodhas been used [KH75, Bro92]. However for large ro-tations around the optical axis, very few methods aree�cient. Among the best methods we �nd the work ofDani and Chaudhuri: Their method works for up to 15degrees rotations using angles between edges [DC95].The mutual Information method for up to 30 degreesof viola works [Vio95], but it requires a large overlapbetween images (i.e. larger than 50%).This article presents a corner-based method to com-pute the homography between two images with smalloverlap (�50%) and arbitrary rotation around the op-tical axis. The computation takes a few seconds.Section 2 presents the homography estimation usingfour points and the algorithm derived when no furtherassumptions are made. In section 3 we present the cor-ner model and in section 4 an e�cient algorithm thatuses this model and a dual space representation of linesto estimate homographies. The method is illustratedwith some results.2 Computing a homography with fourpoints2.1 The equationsWe use homogeneous coordinates to represent apoint, thus a point m in an image will be representedby the vector (x y z)t, with (x=z y=z)t its cartesiancoordinates. As mentioned in the introduction, theimages of a plane seen from two points of view are
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related by a homography H . Thus a point m1 = (x1y1 z1)t of the �rst image has a corresponding point inthe second image m2 = (x2 y2 z2)t de�ned by:m2 = Hm10@ x2y2z2 1A = 0@ h00 h01 h02h10 h11 h12h20 h21 h22 1A0@ x1y1z1 1A(1)Homographies and points are de�ned up to anonzero scalar, thus we have 8 degrees of freedom forH (often, if h22 is di�erent from zero, we take h22= 1, and (x=z y=z 1)t for the points). Every corre-spondence (m1;m2) gives us two equations (2), thusto compute H we need four correspondences.8><>: x2=z2 = h00x1+h01y1+h02h20x1+h21y1+1y2=z2 = h10x1+h11y1+h12h20x1+h21y1+1 (2)2.2 The algorithmNow, if no assumptions are made about the cam-era motion, we have the following algorithm calledALGO1:� step 1: Extract points of interest from the twoimages.� step 2: Compute all possible homographies de-�ned by pairs of fourtuples of points of interest.� step 3: Keep the best one.In detail:step 1: To extract points we use the Harris' detector[HS88], keeping only the best one in a given neighbor-hood. This is to get a homogeneous distribution ofpoints within the whole image.step 2: Knowing nothing about the motion, ev-ery point of the �rst image can match any point inthe second image. Assuming that the camera is al-ways on the same side of the object we know that anynon self intersecting quadrilateral (p11 p12 p13 p14) inimage 1 matches a non self intersecting quadrilateral(p21 p22 p23 p24) in image 2 with the same orienta-tion(a non self intersecting quadrilateral has two pos-sible orientations). If n1 and n2 are the numbers ofextracted points in image 1 and in image 2, respec-tively, we have 4(n14 )(n24 ) possible homographies Hkbetween these points.step 3: We have to �nd, among the homographiesHk, the best estimation of the homography betweenthe two images. The number of homographies is verylarge, so we use a simple method to validate them.To check an Hk we correlate the intensity values atall points of interest p1i of the �rst image with thoseof their corresponding points Hkp1i. The best one is

thus the homography which maximizes the followingcorrelation criterion (3).Hopt = maxHk ( 1nXi ZNCC(p1i; Hkp1i)) (3)Where ZNCC is the zero mean cross-correlation(between -1 and +1, for more information see[FHM+93]) using sub-pixel values for the points inthe second image. We use only the points Hkp1i lyingwithin the second image. n is the number of thosepoints.The necessary condition for the algorithm to �nd asolution is that among the extracted points in the �rstimage there exist four points having their correspond-ing points in the second image. So we need a stablepoint extractor. In table 1 we present a few resultsto show the stability of the Harris extractor. For thistest we used the two images of �gure 1. The originalimages are 768*512.Nb pts Nb pts inter. % match Dist.(pixels)12 6 66 0.954 31 75 1.1133 77 76 1.1467 276 80 1.2Table 1: The �rst column shows the numbers of theextracted points in the �rst image, the second columnthe number of points matched in the common part ofthe two images, the third column shows the percent-ages of matched points in the common part of the twoimages, and the last column the distances between theextracted points and the corresponding points warpedwith the estimated homography.2.3 ResultsWe use table 1 to produce an empirical formula 4 toestimate the number of points that we need to extractto have a su�cient number of matches to �nd a goodestimation for the homography.nbext � nbintoverlap �match (4)Where nbext the number of points that we need to ex-tract. nbint is the number of point desired within theoverlap image. overlap is the percentage of the over-lap image. match is the percentage of match (colon 3of table 1).Figure 1 shows an example of a mosaic built fromthe two images. We need 4 matches within the overlapimage, but usually we overestimate this number toinsure to �nd 4 good matches (e.g. we usually take 6points). Thus for the example of �gure 1 with formula
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4 we have nbint=6, overlap�70%, match=66% andthus nbext�12. In image 1, 12 points are extracted,points 1 to 9 are the points lying in the common partof the two images, points 1 to 6 are matched, andpoints 1 to 4 are the points giving Hopt. Note thatonly the �rst 6 points have a corresponding point thus1 corresponds to 1, 2 corresponds to 2,. . . but points7 to 12 do not correspond to 7 to 11 in the secondimage.

Figure 1: Image 1 at the top, image 2 in the mid-dle, in black the extracted points, in white the pointsmatched, the mosaic built with Hopt at the bottom.2.4 Complexity problemThe results obtained with this method are satisfac-tory. Notice that the overlap is about 70%, in this caseonly twelve extracted points are su�cient to have atleast four corresponding points in the common part.But in spite of this small number of extracted pointsthe computation time is fairly long (i.e. 12 minutes

CPU), this is because there are a lot of homographiesto check (Step 2 of the algorithm has approximatively1 million homographies to check). For a smaller over-lap, for example 50%, we have to extract twenty pointsin the two images, this gives us approximately 100 mil-lions homographies to check and requires a few hoursof computation. Due to this complexity, the methodis not usable for small overlap.3 Corner ModelThe main idea is to use more information from thecorner than just its coordinates. To obtain more infor-mation from the corner, we use the corner model de-veloped by Blaszka and Deriche [DB93]. This methoduses a corner model which utilizes a 2D blurring �lterfor the modelization and �ts the model to the imagedata by non-linear minimization, for more informationsee [BD94].3.1 Corner Model
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Figure 2: A Corner Model.The corner model in �gure 2 is completely describedby 7 parameters noted (x0; y0; �; �; �; A;B). We ini-tialize the corner model with a Harris point and a win-dow size and obtain the 7 parameters of the best �ttedmodel in this window and a measure of the quality ofthe �t. This measure is the mean least-squares di�er-ence between the grey-levels in the image and thosein the model (between 0 and 255). We keep only thecorners with a small measure. The points �tted by themodel are called D.B. corners.3.2 ResultsFigure 3 shows the results obtained with a windowsize of 16*16 for point 5 in the image 1 of �gure 1, and�gure 4 gives the result obtained for the correspondingpoint (i.e. point 5) in the image 2 of �gure 1.
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Figure 3: Zoom of image 1 at the point 5, the crossis the Harris point, the two segments are the corner,measure=2.7.

Figure 4: Zoom of image 2 at the point 5, the crossis the Harris point, the two segments are the corner,measure=2.1.4 Computing an homography with twoD.B. cornersIn this section we present a method to compute ho-mographies using only two D.B. corners instead of foursimple corners. This is to decrease the complexity ofthe algorithm presented in section 2. We use the twolines de�ned by the corner model. These two linesd and d0 can be computed from the corner parame-ters, and more precisely from (x0; y0; �; �) as de�nedin section 3.4.1 Homography computation using linesWhilst in the projective plane, P2, we can use theduality principle between points and lines in this space(i.e. that points and lines are algebraically equiva-lent). Thus we have an homography between the cor-responding lines in two images. We can compute this

homography as in section 2. We need four lines tocompute a homography. Using the notation of section3, the two lines d and d0 of a D.B. corner are de�nedby the following formula:� d =d0 = (� sin(�1) cos(�1) x0 sin(�1)� y0 cos(�1))t(� sin(�2) cos(�2) x0 sin(�2)� y0 cos(�2))t (5)Where �1 = � � �2 and �2 = � + �2We need only two D.B. corners instead of four sim-ple corners to compute an homography. If n1 and n2are the numbers of D.B. corners extracted in images1 and 2 respectively, we have only 2(n12 )(n22 ) homogra-phies to compute which reduces the complexity of thealgorithm to O(n21n22). Since we need only two D.B.corners to compute the homography, consequently wehave to extract fewer points to insure two correspond-ing D.B. corners in the image overlap. Thus the use ofD.B. corners decreases the overall complexity as wellas the magnitudes of n1 and n2.4.2 The relationship between the homog-raphy relating points and its dual re-lating linesIt is well known that if there is an homography Hbetween points in the projective plane, thenH�t is thedual homography between lines [Fau93]. If we matchlines we estimate H�t instead of H .Note that this is equivalent to computing H usingthe four points of intersection of the four lines of thetwo D.B. corners. For example in �gure 5 we show thetwo corners (a1 and b1 in image 1 and a2 and b2 inimage 2), and the two line intersections (c1 and d1 inimage 1 and c2 and d2 in image 2).
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Figure 5: Left: a1 and b1 the two corners, c1 and d1the two intersection points, Right: a2 and b2 the twocorresponding corners, c2 and d2 the two intersectionpoints.4.3 The algorithmWe can thus use directly the four points method(section 2), replacing the four points by four lines.This gives us the algorithm below called ALGO2:� step 1: extract points of interest from the twoimages.
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� step 2: �t the corner model to the extractedpoints.� step 3: Compute all homographies between allpairs of D.B. corners in image 1 and in image 2.� step 4: keep the best one .� step 5: re�ne the best one .With respect to ALGO1 we added two steps. Ob-viously we added step 2, to �t the corner model tothe extracted points to get the lines and compute thehomographies. We also added step 5 (i.e. the re�ningstep). In spite of a better localization of D.B. corners( see table 2), we must not forget that we computethe homography using lines and that an error in thelines induces an error in the homography. To havean idea of the e�ect of this error we can think of thedual case of computing the homography using points(ai; bi; ci; di i=1,2) from the four lines as shown in �g-ure 5. The two D.B. corners (ai; bi) are very well lo-calized, but the intersections of lines (ci; di) may notbe very well localized. Thus we use the best homog-raphy to initialize a local re�ning method to computean improved one (see section 4.4).We can further improve the algorithm, by keepingthe �rst re�nable homography instead of computingall the homographies between the D.B. corners andkeeping the best one. This gives us the following al-gorithm called ALGO3:� step 1: extract points of interest from the twoimages.� step 2: �t the corner model.� step 3: for all computed homographies :� if criterion(3) is close to 1, try to re�ne H� Stop when a successful re�nement is found.This algorithm gives us the �rst pair of good corre-sponding D.B. corners, which avoids computing allthe homographies. This is useful if we extract toomany points from the two images, because we usuallyquickly get a good pair of corresponding D.B. corners.

Nb pts Nb pts inter. % match Dist.(pixels)10 6 85 0.420 12 85 0.539 18 66 0.593 52 69 0.7Table 2: The �rst column shows the number of ex-tracted points, the second column the number ofpoints matched in the common part of the two images,the third column shows the percentages of matchedpoints, and the last column the distances between theextracted points and the corresponding points.In table 2 we notice that for a small number of D.B.corners extracted in the two images the percentage ofmatches is very high (i.e. 85%) in contrast with thepercentage of matches for the simple corners (table 1).Thus the matching based on the D.B. corner modelseems more robust than the one based on the Harrisextractor.4.4 The re�ning stepFor the re�ning step we could use the methods citedin the introduction. Instead we use a very fast andsimple method to re�ne the homography Hopt. Tak-ing advantage of the good initialization, we considerthat the scale and the rotation around the optical axisare roughly contained in Hopt, and assume that locallythe real homography is Hopt up to a small translation.Each point p1i in image 1 has its corresponding pointHoptp1i, thus to re�ne Hopt, we translate this point ina small neighborhood and keep the point which corre-lates best with p1i. This yields a new list of matchedpoints, which we use to compute a new estimation ofthe homography by a non-linear minimization tech-nique. We check this new homography using the cor-relation criterion (3) with more Harris points, if thecriterion is close to 1 (e.g. >0.8) we stop the algo-rithm.4.5 Speeding up the algorithm using acoarse to �ne approachFor a small number of D.B. corners the �tting steptakes up the main computation time. To speed up thealgorithm we use a Multiscale Method: the �tting steptakes less time at the coarse level, because we �t thecorners with a smaller window size. So, we run �rst thealgorithm at the coarsest level and re�ne iterativelythe homography at all subsequent levels until we reachthe highest resolution (i.e. the original image).4.6 ResultsAll the results are for a SPARC Station 20.Figure 6 shows the results obtained with ALGO3,we see that they are comparable with those obtained
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with ALGO1 (�gure 1). As the overlap is about 70%,7 D.B. corners are su�cient to insure that we have atleast two corresponding D.B. corners. The computa-tion time is 10 seconds, this is because we have onlyapproximatively 1600 homographies to check, and inthis case the computation time is mainly the corner�tting operation.In �gure 7 the overlap is about 50% and we haveadd a rotation of 30 degrees. Having a 50% overlapwe need about 10 D.B. corners, and there are approx-imatively 8000 homographies. In this case the com-putation time is 12 seconds, again most of it for thecorner �tting operation.In �gure 8, we scanned two postcards of Pythagor-eio (Samos Island-Greece), we still have 12 secondsCPU.Figure 9 shows an interesting case, the overlap isabout 50% and the second image is upside down. Westill need 10 corners and we still have 12 seconds CPU.In �gure 10 we have a very large zoom (� 2), thisgives us a 20% overlap. In this case we have two prob-lems, the �rst is the small overlap, the second is thesize of the features. For this reason we had to extractmore points (about 30). The number of homographiesis roughly 500000, the computation time is 8 minutes.5 ConclusionsIn this article we have presented a method to com-pute the homography between two images, with anyrotation around the optical axis and a large zoom-ing factor. The method relies on �nding geometricfeatures,(i.e. corners), which contain more informa-tion than simple points. This allows us to cut downthe complexity of the matching between image fea-tures and hence to tackle more di�cult cases than withpoints-based methods.References[BAHH92] J.R. Bergen, P. Anandan, K.J. Hanna, andR. Hingorani. Hierarchical model-based mo-tion estimation. In Sandini, editor, Proc. ofthe 2nd ECCV, pages 237�252. Springer Ver-lag, 1992.[BD94] Thierry Blaszka and Rachid Deriche. Recov-ering and characterizing image features usingan e�cient model based approach. TechnicalReport 2422, INRIA, November 1994.[Bro92] L.G. Brown. A survey of image registra-tion techniques. ACM Computing Surveys,24(4):325�376, December 1992.[DB93] R. Deriche and T. Blaszka. Recovering andcharacterizing image features using an e�-cient model based approach. In Proceedings ofthe International Conference on Computer Vi-sion and Pattern Recognition, pages 530�535,
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Figure 6: Top: the �rst image, Middle: the secondimage, Bottom: the mosaic. Figure 7: Top: the �rst image, Middle: the secondimage (30 degrees rotation arround the optical axisand di�erent viewing direction), Bottom: the mosaic.

Figure 8: Top: the two images, Bottom: the mosaic.
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Figure 9: Top: the �rst image, Middle: the secondimage (180 degrees rotation arround the optical axisand di�erent viewing direction), Bottom: the mosaic. Figure 10: Top: the �rst image, middle: the secondimage (scale factor of 2 and di�erent viewing direc-tion), Bottom: the mosaic.


